eagle $_IO$ Release 0.0.1

Nov 24, 2022

Tutorials

1	Reading data	3
2	Unit conversion	5
3	Future Development	7
4	Snapshot arrays	9
5	FOF arrays	15
6	Subfind arrays	21
7	Contributors	27
8	License & Attribution	29
9	Changelog 9.1 0.0.2 (04-09-2019)	31 31 31

Version 0.0.2

Reading EAGLE HDF5 files in native Python, with optional multithreading.

See below for tutorials, as well as a description of each of the output properties.

Reading data

The module offers one main function, read_array:

```
import eagle_IO.eagle_IO as E
```

```
M_200 = E.read_array(fileType, directory, tag, array)
```

read_array accepts 4 arguments; the first is a string describing the type of file and data read. The allowed values are:

Value	Description	Example of data that can be read
FOF	FoF group informations	Group centre of mass, group length, group star
		formation rate
FOF_PARTICLES	IDs of the particles in a FOF group	Particle IDs
SNIP_FOF	FoF group informations (snipshot)	Group centre of mass, group length, group star
		formation rate
SNIP_FOF_PARTICLES	IDs of the particles in a FOF group	Particle IDs
	(snipshot)	
PARTDATA	Particles that are in a FOF group	Particle Mass, velocity, entropy, stellar age
SNIP_PARTDATA	Particles that are in a FOF group	Particle Mass, velocity, entropy, stellar age
	(snipshot)	
SNAP	Full information about all particles	Particle Mass, velocity, entropy, stellar age
SNIP	Reduced information about all par-	Mass, velocity
	ticles	
SUBFIND	Subhalo information	Subhalo mass, subhalo centre of potential
SUBFIND_GROUP	Subfind halo information	Group centre of potential, M_200, R_500
SUB-	IDs of the particles in a subhalo	Particle IDs
FIND_PARTICLES		
SNIP_SUBFIND	Subhalo information (snipshot)	Subhalo mass, subhalo centre of potential
SNIP_SUBFIND_GROU	P Subfind halo information (snipshot)	Group centre of potential, M_200, R_500
SNIP_SUBFIND_PARTIC	CILES of the particles in a subhalo	Particle IDs
	(snipshot)	

The second argument is the location of the directory containing the data. For instance:

"/cosma5/data/Eagle/ScienceRuns/Planck1/L0100N1504/PE/EagleReference/data/"

The third argument is the "tag" of the output. This is the part of the filename that contains the snapshot number and the redshift. For the 29 main output times in the fiducial periodic volumes, the values are:

"000_z020p000" "001_z015p132" "002_z009p993" "003_z008p988" "004_z008p075" "005_z007p050" "006_z005p971" "007_z005p487" "008_z005p037" "009_z004p485" "010_z003p984" "011_z003p528" "012_z003p017" "013_z002p478" "014_z002p237" "015_z002p012" "017_z001p487" "018_z001p259" "019_z001p004" "020_z000p865" "021_z000p736" "022_z000p615" "023_z000p503" "024_z000p366" "025_z000p271" "026_z000p183" "027_z000p101" "028_z000p000"

The last argument is the name of the array or attribute to be read. For instance:

"/PartType4/Metallicity"

or:

"/PartType5/BH_TimeLastmerger"

The routine returns a numpy array containing the values extracted from the files. The order of the elements is preserved and the type of the values is the same as that stored in the HDF5 files.

To read the value of M_200 for all halos at z = 1.5 in the reference volume, one would use:

```
import eagle_IO.eagle_IO as E
sim = "/cosma5/data/Eagle/ScienceRuns/Planck1/L0100N1504/PE/EagleReference/data/"
tag = "017_z001p487"
M_200 = E.read_array("SUBFIND_GROUP", sim, tag, "FOF/Group_M_Crit200")
```

Unit conversion

By default, the read_array function converts the data read from the file into "h free" physical units. This is done by reading the relevant conversion factors from the HDF5 file. If verbose is True, the conversions applied to the data are reported by the function and printed to the standard output. This behaviour can be modified using the two optional parameters noH and physicalUnits. If noH is set to False then the routine does not apply any h factor correction. If physicalUnits is set to False then no a-factor correction is applied. Running with noH=False, physicalUnits=False will hence read in the data as it is in the file without applying any correction. For instance, reading the particle coordinates at z = 1 with this code:

```
pos = E.read_array("SUBFIND_GROUP", sim, tag, "FOF/Group_R_Crit500", noH=True,_

→physicalUnits=True)
```

will yield:

```
Converting to physical units. (Multiplication by a^1, a=1)
Converting to h-free units. (Multiplication by h^{-1}, h=0.6777)
```

This relies on the fact that the units written in the file are correct. Always check that this is the case by looking at the standard output!!

chapter $\mathbf{3}$

Future Development

- read attributes function
- tests for file existence, file ordering etc.

Snapshot arrays

Particle Type	Array Name	Array Description
PartType0	AExpMaximumTemperature	Expansion factor a when particle
		had highest temperaturel
PartType0	Coordinates	Co-moving coordinates. Physical: r
		= a x = Coordinates h to the power
		of-1 a U_L [cm]
PartType0	Density	Co-moving mass densities. Physical
		rho = Densities h to the power of $2a$
		to the power of-3 U_M U_L to the
		power of-3 [g/cm to the power of3]
PartType0	ElementAbundance/Carbon	II
PartType0	ElementAbundance/Helium	II
PartType0	ElementAbundance/Hydrogen	II
PartType0	ElementAbundance/Iron	I
PartType0	ElementAbundance/Magnesium	II
PartType0	ElementAbundance/Neon	I
PartType0	ElementAbundance/Nitrogen	II
PartType0	ElementAbundance/Oxygen	II
PartType0	ElementAbundance/Silicon	II
PartType0	Entropy	Particle entropy. Physical s =
		Entropy h to the power of(2-
		2*GAMMA) UnitPressure Unit-
		Density to the power of-GAMMA
PartType0	GroupNumber	FoF group number particle is inl
PartType0	HostHalo_TVir_Mass	Estimate of halo's virial tempera-
		ture, calculated from the DM halo
		mass. $T_vir = (MEANMOLION-$
		IZED * PROTONMASS / 3. /
		BOLTZMANN) * (G * m200 *
		H(z) to the power of (2./3.) [K]
		Continued on payt page

Particle Type	Table 1 – continued from previous	Array Description
Particle Type PartType0	InternalEnergy	Thermal energy per unit mass.
PartType0	InternalEnergy	Physical $u = InternalEnergy U_V$ to
		the power of 2 [(cm/s) to the power
		of2]
PartType0	IronMassFracFromSNIa	Iron mass from SNIa divided by par-
rattypeo	nonwassi iaci ionisi ia	ticle mass. (Initial particle mass for
		stars)
PartType0	Mass	Particle mass. Physical m = Mass h
Turrypeo	111435	to the power of-1 U_M [g]
PartType0	MaximumTemperature	Maximum temperature ever reached
••	-	by a particle [K]
PartType0	MetalMassFracFromAGB	Metal mass from AGB and their
		progenitors divided by particle
		mass. (Initial particle mass for
		stars)
PartType0	MetalMassFracFromSNII	Metal mass from SNII and their pro-
		genitors divided by particle mass.
		(Initial particle mass for stars)
PartType0	MetalMassFracFromSNIa	Metal mass from SNIa divided by
		particle mass. (Initial particle mass
		for stars)
PartType0	MetalMassWeightedRedshift	Metal mass weighted redshift at
		which particle was enriched.
PartType0	Metallicity	Mass fraction of elements heavier
		than Heliuml
PartType0	OnEquationOfState	Star-formation flag. 0 if has never
		been star-forming, +ve if currently
		sf, -ve if not currently sf, value in-
		dicates aexp at which it obtained its
		current statel
PartType0	ParticleIDs	Unique particle identifier
PartType0	SmoothedElementAbundance/Car	
PartType0	SmoothedElementAbundance/Hel	
PartType0	SmoothedElementAbundance/Hyd	
PartType0	SmoothedElementAbundance/Iror	
PartType0	SmoothedElementAbundance/Mag	
PartType0	SmoothedElementAbundance/Nec	
PartType0	SmoothedElementAbundance/Nitr	-
PartType0	SmoothedElementAbundance/Oxy	
PartType0	SmoothedElementAbundance/Sili	
PartType0	SmoothedIronMassFracFromSNIa	
		by particle mass. (Initial particle
D		mass for stars)
PartType0	SmoothedMetallicity	Smoothed mass fraction of elements
D		heavier than Helium
PartType0	SmoothingLength	Co-moving smoothing length.
		Physical h = SmoothingLength h to
		the power of-1 a U_L [cm]
PartType0	StarFormationRate	Gas star formation rate in solar
		masses / yrl Continued on next page

Table 1 – continued from previous page

	Table 1 – continued from previous p	÷
Particle Type	Array Name	Array Description
PartType0	SubGroupNumber	Subgroup number particle is inl
PartType0	Temperature	Temperature [K]
PartType0	TotalMassFromAGB	Total mass received from AGB and
• •		their progenitorsl
PartType0	TotalMassFromSNII	Total mass received from SNII and
<i>.</i>		their progenitors
PartType0	TotalMassFromSNIa	Total mass received from SNIal
PartType0	Velocity	
		Co-moving velocities. Physical v_p = a dx/dt =
		^
D4T	Coordinates	Communication and the second instance Developed in the
PartType1	Coordinates	Co-moving coordinates. Physical: r
		= a x = Coordinates h to the power
	~ ~ ~	of-1 a U_L [cm]
PartType1	GroupNumber	FoF group number particle is inl
PartType1	ParticleIDs	Unique particle identifier
PartType1	SubGroupNumber	Subgroup number particle is inl
PartType1	Velocity	
		Co-moving velocities. Physical v_p = a dx/dt
		Λ
PartType4	AExpMaximumTemperature	Expansion factor a when particle
Part Type4	AEXPINIAXIIIIUIIITemperature	
	D' (b)ite	had highest temperaturel
PartType4	BirthDensity	Local gas density (physical units)
		when a star particle was born. No
		a-factor correction as the a-factor at
		birth time is factored in.
PartType4	Coordinates	Co-moving coordinates. Physical: r
		= a x = Coordinates h to the power
		of-1 a U_L [cm]l
PartType4	ElementAbundance/Carbon	
PartType4	ElementAbundance/Helium	
PartType4	ElementAbundance/Hydrogen	
PartType4	ElementAbundance/Iron	11
PartType4	ElementAbundance/Magnesium	П
PartType4	ElementAbundance/Neon	11
PartType4	ElementAbundance/Nitrogen	
PartType4	ElementAbundance/Oxygen	
PartType4	ElementAbundance/Silicon	
PartType4	Feedback_EnergyFraction	Energy fraction used for SNII feed-
		back (no units).
PartType4	GroupNumber	FoF group number particle is inl
PartType4	HostHalo_TVir	Halo's virial temperature used in
		Type II SNe feedback [K]
PartType4	HostHalo_TVir_Mass	Estimate of halo's virial tempera-
I urijpe.		ture, calculated from the DM halo
		mass. $T_vir = (MEANMOLION-$
		IZED * PROTONMASS / 3. /
		BOLTZMANN) $*$ (G $*$ m200 $*$
		H(z) to the power of (2./3.) [K]
	1	11(2) to the power $01(2,3,3,7)$ [15]

lable	1 – continued from	previous page

11

Particle Type	Array Name	Array Description
PartType4	InitialMass	Star particle mass at formation time.
rarryper	Intuitviusb	Physical $m = InitialMass h to the$
		power of-1 U_M [g]l
PartType4	IronMassFracFromSNIa	Iron mass from SNIa divided by par-
T artiype+		ticle mass. (Initial particle mass for
		stars)
PartType4	Mass	Particle mass. Physical m = Mass h
Tarrype+	141035	to the power of $1 \text{ U}_{M}[g]$
PartType4	MaximumTemperature	Maximum temperature ever reached
T artiype+	Maximum temperature	by a particle [K]
PartType4	MetalMassFracFromAGB	Metal mass from AGB and their
Tarrype+	Metalwassi faci foliiAOD	progenitors divided by particle
		mass. (Initial particle mass for
		` 1
PartType4	MetalMassFracFromSNII	stars) Metal mass from SNII and their pro-
Part Type4	Metalwassfracfioliisinii	-
		genitors divided by particle mass.
DestTrant 4	MetalMassFracFromSNIa	(Initial particle mass for stars)
PartType4	MetalMassFracFromSNIa	Metal mass from SNIa divided by
		particle mass. (Initial particle mass
		for stars)
PartType4	MetalMassWeightedRedshift	Metal mass weighted redshift at
		which particle was enriched.
PartType4	Metallicity	Mass fraction of elements heavier
		than Helium
PartType4	ParticleIDs	Unique particle identifier
PartType4	PreviousStellarEnrichment	This is the expansion factor when
De est Trans e 4	SmoothedElementAbundance/Car	the star last did enrichment.
PartType4	SmoothedElementAbundance/Car	
PartType4		
PartType4	SmoothedElementAbundance/Hyd	
PartType4	SmoothedElementAbundance/Iror	
PartType4	SmoothedElementAbundance/Mag	
PartType4	SmoothedElementAbundance/Nec	
PartType4	SmoothedElementAbundance/Nitr	
PartType4	SmoothedElementAbundance/Oxy	-
PartType4	SmoothedElementAbundance/Sili	
PartType4	SmoothedIronMassFracFromSNIa	
		by particle mass. (Initial particle
		mass for stars)
PartType4	SmoothedMetallicity	Smoothed mass fraction of elements
		heavier than Heliuml
PartType4	SmoothingLength	Co-moving smoothing length.
		Physical $h = $ SmoothingLength h to
		the power of-1 a U_L [cm]
PartType4	StellarEnrichmentCounter	The counter shows the number of
		time steps since enrichment was last
		done.l
PartType4	StellarFormationTime	Expansion factor a when star parti-
<i>7</i> 1		cle was bornl
PartType4	SubGroupNumber	Subgroup number particle is inl
~ 1	I '	Continued on next page

Table 1 – continued from previous page

Partiala Tuna	Iable 1 – continued from previous	
Particle Type	Array Name	Array Description
PartType4	TotalMassFromAGB	Total mass received from AGB and
		their progenitors
PartType4	TotalMassFromSNII	Total mass received from SNII and
		their progenitors
PartType4	TotalMassFromSNIa	Total mass received from SNIal
PartType4	Velocity	Co-moving velocities. Physical $v_p = a dx/dt = v_{h}$
PartType5	BH_AccretionLength	BH smoothing length.
PartType5	BH_CumlAccrMass	Cumulative mass accreted by largest
Turijpee		progenitor of this BH. Physical m =
		Mass h to the power of 1 U_M [g]
PartType5	BH_CumlNumSeeds	Cumulative number of BH seeds
PartTypes	DI_CUIIIINUIIISCCUS	swallowed by this BH.
	DII Danii	
PartType5	BH_Density	Co-moving black hole densities.
		Physical rho = Densities h to the
		power of 2 a to the power of -3 U_M
		U_L to the power of-3 [g/cm to the
		power of3]l
PartType5	BH_EnergyReservoir	Black hole energy reservoir for ther-
-		mal feedback.
PartType5	BH_FormationTime	Expansion factor a when BH parti-
		cle was bornl
PartType5	BH_Mass	BH mass. Physical $m = Mass h to$
Turrippee		the power of -1 U_M [g]
PartType5	BH_Mdot	BH accretion rate. Physical mdot =
Partrypes		BH accretion rate. Physical indot = $BH_Mdot h$ to the power of $-1 U_M$
		-
P (T E	DIL Mast Massive Dre conitor ID	/U_T [g/s]
PartType5	BH_MostMassiveProgenitorID	Unique ID of the most massive pro-
		genitor of this BH. At each merger
		event, the ID of the most massive
		of the two merging BHs is stored in
		this array.l
PartType5	BH_Pressure	Black hole surrounding gas pres-
		sure. Physical $P = Pressure h$
		to the power of 2 a to the power
		of(-3*GAMMA) U_M U_V to the
		power of 2 U_L to the power of -3 [g
		cm to the power of-1 s to the power
		of-2]
PartType5	BH_SoundSpeed	Black hole surrounding gas sound
rattypes		speed. Physical $c_snd = C_snd U_V$
		speed. Physical c_shu = C_shu O_v [cm/s]
P (T E		
PartType5	BH_SurroundingGasVel	Velocity of the gas surrounding the
		BH (kernel weighted). Physical Ve-
		locity = Velocity a to the power of-1
		U_M U_V to the power of [cm/s]
		Continued on next page

Table 1	- continued from	previous page
---------	------------------	---------------

Particle Type	Array Name	Array Description
PartType5	BH_TimeLastMerger	Expansion factor a when BH par-
		ticle last accreted an other BH. 0
		if the particle as never accreted an-
		other BH.
PartType5	BH_WeightedDensity	Co-moving weighted black hole
		densities. Physical rho = Densities
		h to the power of 2 a to the power of-
		3 U_M U_L to the power of-3 [g/cm
		to the power of3]
PartType5	Coordinates	Co-moving coordinates. Physical: r
		= a x $=$ Coordinates h to the power
		of-1 a U_L [cm]
PartType5	GroupNumber	FoF group number particle is inl
PartType5	HostHalo_TVir_Mass	Estimate of halo's virial tempera-
		ture, calculated from the DM halo
		mass. $T_vir = (MEANMOLION-$
		IZED * PROTONMASS / 3. /
		BOLTZMANN) * (G * m200 *
		H(z) to the power of (2./3.) [K]
PartType5	Mass	Particle mass. Physical m = Mass h
		to the power of-1 U_M [g]
PartType5	ParticleIDs	Unique particle identifier
PartType5	SmoothingLength	Co-moving smoothing length.
		Physical $h = $ SmoothingLength h to
		the power of-1 a U_L [cm]
PartType5	SubGroupNumber	Subgroup number particle is inl
PartType5	Velocity	Co-moving velocities. Physical v_p
		= a dx/dt = Velocities a to the power
		of1/2 U_V [cm/s]

Table 1 – continued from previous page

FOF arrays

Group numbers begin at 1. Spherical overdensities associated with a FOF group use the negative of the group number. A particle can only be associated with one spherical overdensity.

The following arrays can be found in the FOF group files:

Group	Array Name	Description
FOF	BH_Mdot	Particle mass. Physical m = Mass h
		to the power of-1 U_M [g]
FOF	BlackHoleMass	Particle mass. Physical m = Mass h
		to the power of-1 U_M [g]
FOF	CentreOfMass	Co-moving coordinates. Physical: r
		= a x = Coordinates h to the power
		of-1 a U_L [cm]
FOF	GroupLength	Number of particles in this group
FOF	GroupLengthType	Number of particles in this group of
		a given type
FOF	GroupMassType	Particle mass. Physical m = Mass h
		to the power of-1 U_M [g]
FOF	GroupOffset	Offset of IDs of this group, starts at
		01
FOF	GroupOffsetType	Meaning of this variable has not yet
		been defined. I
FOF	Mass	Particle mass. Physical m = Mass h
		to the power of-1 U_M [g]
FOF	NSF/AExpMaximumTemperature	Expansion factor a when particle
		had highest temperature
FOF	NSF/ElementAbundances/Carbon	
		Continued on next need

Croup	Iable 1 – continued from previous p	0
Group	Array Name NSF/ElementAbundances/Helium	Description
FOF	NSF/ElementAbundances/Hellum	
FOF	NSF/ElementAbundances/Hydrogen	
гог	INSF/ElementAbundances/Hydrogen	
FOF	NSF/ElementAbundances/Iron	
TOF	NSI/ElementAbundances/Iron	
FOF	NSF/ElementAbundances/Magnesiu	1m
101		
FOF	NSF/ElementAbundances/Neon	
101		
FOF	NSF/ElementAbundances/Nitrogen	
101		
FOF	NSF/ElementAbundances/Oxygen	
101	1017Element toundances/ 0xygen	
FOF	NSF/ElementAbundances/Silicon	
101		
FOF	NSF/Entropy	Meaning of this variable has not yet
101	Ttor /Entropy	been defined.
FOF	NSF/Mass	Particle mass. Physical m = Mass h
101	1101/111035	to the power of -1 U_M [g]
FOF	NSF/MaximumTemperature	Maximum temperature ever reached
101		by a particle [K]
FOF	NSF/Metallicity	Mass fraction of elements heavier
101		than Helium
FOF	NSF/SmoothedElementAbundances	
101		
FOF	NSF/SmoothedElementAbundances	/Helium
101		
FOF	NSF/SmoothedElementAbundances	/Hydrogen
1.01		"11, u 0601
FOF	NSF/SmoothedElementAbundances	s/Iron
		<i>"</i>
FOF	NSF/SmoothedElementAbundances	Magnesium
		<i>"</i> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
FOF	NSF/SmoothedElementAbundances	Neon
1.01		"100H
		Continued on next page

Table	1 – continued	from	previous page
-------	---------------	------	---------------

	Table 1 – continued from previous p		
Group	Array Name	Description	
FOF	NSF/SmoothedElementAbundances	NSF/SmoothedElementAbundances/Nitrogen	
FOF	NSF/SmoothedElementAbundances	s/Øxygen	
FOF	NSF/SmoothedElementAbundances	s/\$ilicon	
FOF	NSF/SmoothedIronMassFracFromS	NISmoothed mass from SNIa divided	
		by particle mass. (Initial particle	
		mass for stars)	
FOF	NSF/SmoothedMetallicity	Smoothed mass fraction of elements	
		heavier than Helium	
FOF	NSF/Temperature	Meaning of this variable has not yet	
		been defined. I	
FOF	ParticleIDs	Unique particle identifier	
FOF	SF/AExpMaximumTemperature	Expansion factor a when particle	
		had highest temperature	
FOF	SF/ElementAbundaces/Carbon		
FOF	SF/ElementAbundaces/Helium		
FOF	SF/ElementAbundaces/Hydrogen		
FOF	SF/ElementAbundaces/Iron		
FOF	SF/ElementAbundaces/Magnesium		
FOF	SF/ElementAbundaces/Neon		
FOF	SF/ElementAbundaces/Nitrogen		
FOR			
FOF	SF/ElementAbundaces/Oxygen		
FOF	SF/ElementAbundaces/Silicon		
FOF	SF/Entropy	Meaning of this variable has not yet	
		been defined. I	
		Continued on next page	

Table	1 – continued from previous page

	Table 1 – continued from previous	
Group	Array Name	Description
FOF	SF/IronMassFracFromSNIa	Iron mass from SNIa divided by par-
		ticle mass. (Initial particle mass for
		stars)
FOF	SF/Mass	Particle mass. Physical m = Mass h
		to the power of -1 U_M [g]
FOF	SF/MaximumTemperature	Maximum temperature ever reached
		by a particle [K]
FOF	SF/Metallicity	Mass fraction of elements heavier
		than Helium
FOF	SF/SmoothedElementAbundances	s/Carbon
-		
FOF	SF/SmoothedElementAbundances	s/Helium
101	Si / Sinoothod Liementi Younduneet	
FOF	SF/SmoothedElementAbundances	Hydrogen
101	Si /SinooticullementAbundances	si nyulogen
FOF	SF/SmoothedElementAbundances	- Aran
гог	SF/ShloothedElementAbundances	5/11011
FOF		
FOF	SF/SmoothedElementAbundances	s/Magnesium
FOF		
FOF	SF/SmoothedElementAbundances	s/Neon
202		A.Y.
FOF	SF/SmoothedElementAbundances	5/Nitrogen
202		12
FOF	SF/SmoothedElementAbundances	s/Oxygen
FOF	SF/SmoothedElementAbundances	s/Silicon
FOF	SF/SmoothedIronMassFracFromS	SNIa Smoothed mass from SNIa divided
		by particle mass. (Initial particle
		mass for stars)
FOF	SF/SmoothedMetallicity	Smoothed mass fraction of elements
		heavier than Helium
FOF	SF/Temperature	Meaning of this variable has not yet
		been defined.
FOF	StarFormationRate	Gas star formation rate in solar
		masses / yr l
FOF	Stars/AExpMaximumTemperature	-
	r ····································	had highest temperature
FOF	Stars/ElementAbundances/Carbor	
-		
		Continued on payt page

Table 1 – continued from previous page	aae
--	-----

0	Table 1 – continued from previous pa	-
Group	Array Name	Description
FOF	Stars/ElementAbundances/Helium	
FOF	Stars/ElementAbundances/Hydrogen	
FOF	Stars/ElementAbundances/Iron	
FOF	Stars/ElementAbundances/Magnesium	n
FOF	Stars/ElementAbundances/Neon	
FOF	Stars/ElementAbundances/Nitrogen	
FOF	Stars/ElementAbundances/Oxygen	
FOF	Stars/ElementAbundances/Silicon	
FOF	Stars/InitialMass	Star particle mass at formation time. Physical m = InitialMass h to the power of-1 U_M [g]
FOF	Stars/InitialMassWeightedStellarAge	Expansion factor a when star parti- cle was born
FOF	Stars/IronMassFracFromSNIa	Iron mass from SNIa divided by par- ticle mass. (Initial particle mass for stars)
FOF	Stars/Mass	Particle mass. Physical m = Mass h to the power of-1 U_M [g]
FOF	Stars/MaximumTemperature	Maximum temperature ever reached by a particle [K]
FOF	Stars/Metallicity	Mass fraction of elements heavier than Helium
FOF	Stars/SmootheElementAbundances/C	
FOF	Stars/SmootheElementAbundances/H	elium
FOF	Stars/SmootheElementAbundances/H	ydrogen
FOF	Stars/SmootheElementAbundances/Ir	on
		Continued on next page

Group	Array Name	Description
FOF	Stars/SmootheElementAbundances	
FOF	Stars/SmootheElementAbundances,	Neon
FOF	Stars/SmootheElementAbundances	/Nitrogen
FOF	Stars/SmootheElementAbundances,	/Oxygen
FOF	Stars/SmootheElementAbundances,	/Silicon
FOF	Stars/SmoothedIronMassFracFrom	SNIS moothed mass from SNIa divided by particle mass. (Initial particle mass for stars)
FOF	Stars/SmoothedMetallicity	Smoothed mass fraction of elements heavier than Helium
FOF	Velocity	Co-moving velocities. Physical v_p = a dx/dt = Velocities a to the power of1/2 U_V [cm/s]((A bug affects this quantity. The correct factor is a^-1 and not a^0.5))

Table 1-c	continued from	previous page
-----------	----------------	---------------

Subfind arrays

Subgroup numbers begin at 0. Subgroup 0 of a FOF group corresponds to the most massive subgroup within the group.

The following arrays can be found in the Eagle subfind files:

Group	Array Name	Description
FOF	ContaminationMass	Contaminating mass. Physical M = Mass U_M[g]
FOF	FirstSubhaloID	Index of first sub halo in SubHalo list (starts at 0)
FOF	GroupCentreOfPotential	Co-moving position of most bound particle. Physical position = position
FOF	GroupLength	Number of particles in this group
FOF	GroupMass	Total mass of FoF group. Physical $M = Mass h$ to the power of $-1 U_M$
FOF	GroupOffset	Offset of IDs of this group, starts at 0
FOF	Group_M_Crit200	Mass within Rcrit200. Physical M = Mass h to the power of-1 U_M[g
FOF	Group_M_Crit2500	M_Crit2500
FOF	Group_M_Crit500	M_Crit500
FOF	Group_M_Mean200	Mass within RMean200. Physical M = Mass h to the power of-1 U_M
FOF	Group_M_Mean2500	M_Mean2500
FOF	Group_M_Mean500	M_Mean500
FOF	Group_M_TopHat200	Mass within RTophat200. Physical M = Mass h to the power of-1 U_M
FOF	Group_R_Crit200	Co-moving radius within which density is 200 times critical density. P
FOF	Group_R_Crit2500	R_Crit2500
FOF	Group_R_Crit500	R_Crit500
FOF	Group_R_Mean200	Co-moving radius within which density is 200 times mean density. Phy
FOF	Group_R_Mean2500	R_Mean2500
FOF	Group_R_Mean500	R_Mean500
FOF	Group_R_TopHat200	Co-moving radius within which density is 200 times (18 * pi to the po
FOF	NumOfSubhalos	Number of subhaloes in this FoF group
^ ^		
IDs	ParticleID	PID
IDs	Particle_Binding_Energy	Binding energy of particles
^ ^		

Group	Array Name	Description
Subhalo	ApertureMeasurements/Mass/001kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of
Subhalo	ApertureMeasurements/Mass/003kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of
Subhalo	ApertureMeasurements/Mass/005kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of
Subhalo	ApertureMeasurements/Mass/010kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/020kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/030kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/040kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/050kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/070kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/Mass/100kpc	Masses within apertures from 1 to 100 kpc (physical) of the centre of p
Subhalo	ApertureMeasurements/SFR/001kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/003kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/005kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/010kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/020kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/030kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/040kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/050kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/070kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/SFR/100kpc	Star formation rate within apertures from 1 to 100 kpc (physical) of the
Subhalo	ApertureMeasurements/VelDisp/001kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/003kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/005kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/010kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/020kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/030kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/040kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/050kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/070kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	ApertureMeasurements/VelDisp/100kpc	Stellar velocity dispersion within apertures from 1 to 100 kpc (physica
Subhalo	BlackHoleMass	BH mass. Physical m = Mass h to the power of $-1 U_M [g]$
Subhalo	BlackHoleMassAccretionRate	BH accretion rate. Physical mdot = BH_Mdot h to the power of -1 U_M
Subhalo	CentreOfMass	
Subhalo	Centreonviass	Co-moving position of COM. Physical position = position h to the pow
	CentreOfPotential	Co-moving position of COM. Physical position = position h to the pow Co-moving position of most bound particle. Physical position = positio
Subhalo	CentreOfPotential	Co-moving position of most bound particle. Physical position = position
Subhalo Subhalo		
	CentreOfPotential GasSpin	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles
Subhalo	CentreOfPotential GasSpin GroupNumber	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to
Subhalo Subhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass co
Subhalo Subhalo Subhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass constrained by each particle particle by each particle particle by each particle particle particle particle particles and particles part
Subhalo Subhalo Subhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass constrained by each particle particle ID of lowest <i>total</i> energy particle
SubhaloSubhaloSubhaloSubhaloSubhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾
SubhaloSubhaloSubhaloSubhaloSubhaloSubhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass con Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars
Subhalo Subhalo Subhalo Subhalo Subhalo Subhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ InitialMassWeightedStellarAge	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass c Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars Initial mass weighted age of stars in Gyr Total kinetic energy of particles bound to this halo
SubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ InitialMassWeightedStellarAge KineticEnergy	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass c Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars Initial mass weighted age of stars in Gyr Total kinetic energy of particles bound to this halo Total mass of this group. Physical M = Mass h to the power of-1 U_M
SubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ InitialMassWeightedBirthZ InitialMassWeightedStellarAge KineticEnergy Mass MassTwiceHalfMassRad MassType	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass con Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars Initial mass weighted age of stars in Gyr Total kinetic energy of particles bound to this halo Total mass of this group. Physical M = Mass h to the power of-1 U_M Mass contained within twice the half mass radius for each particle type Total mass of this group for each particle type. Physical M = Mass h to
SubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhaloSubhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ InitialMassWeightedStellarAge KineticEnergy Mass MassTwiceHalfMassRad MassType NSF/ElementAbundances/Carbon	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass con- Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars Initial mass weighted age of stars in Gyr
Subhalo	CentreOfPotential GasSpin GroupNumber HalfMassProjRad HalfMassRad IDMostBound InertiaTensor InitialMassWeightedBirthZ InitialMassWeightedBirthZ InitialMassWeightedStellarAge KineticEnergy Mass MassTwiceHalfMassRad MassType	Co-moving position of most bound particle. Physical position = position Angular momentum per unit mass of gas particles FOF Group Number subhalo belongs to Projected (av. over 3 axes) radius enclosing half of the subhalo mass con Radius enclosing half of the subhalo mass comprised by each particle Particle ID of lowest <i>total</i> energy particle Matrix for the second moment of matter distribution. ¹⁾ Initial mass weighted metallicity of stars Initial mass weighted age of stars in Gyr Total kinetic energy of particles bound to this halo Total mass of this group. Physical M = Mass h to the power of-1 U_M Mass contained within twice the half mass radius for each particle type Total mass of this group for each particle type. Physical M = Mass h to

Group	Array Name	Description
Subhalo	NSF/ElementAbundances/Iron	•
Subhalo		²⁾
	NSF/ElementAbundances/Magnesium NSF/ElementAbundances/Neon	²⁾
Subhalo		²⁾
Subhalo	NSF/ElementAbundances/Nitrogen	²⁾
Subhalo	NSF/ElementAbundances/Oxygen	²⁾
Subhalo	NSF/ElementAbundances/Silicon	²⁾
Subhalo	NSF/IronFromSNIa	Iron from SNIa
Subhalo	NSF/IronFromSNIaSmoothed	Smoothed iron from SNIa
Subhalo	NSF/KineticEnergy	Kinetic energy of NSF gas
Subhalo	NSF/Mass	Mass
Subhalo	NSF/MassFromAGB	Mass from AGB
Subhalo	NSF/MassFromSNII	Mass from SNII
Subhalo	NSF/MassFromSNIa	Mass from SNIa
Subhalo	NSF/MassWeightedEntropy	Mass weighted mean entropy of NSF gas
Subhalo	NSF/MassWeightedPotential	Mass weighted potential
Subhalo	NSF/MassWeightedTemperature	Mass weighted mean temperature of NSF gas
Subhalo	NSF/Metallicity	Metallicity weighted by mass of non star forming gas in subhalos
Subhalo	NSF/MetalsFromAGB	Mass in metals from AGB
Subhalo	NSF/MetalsFromSNII	Mass in metals from SNII
Subhalo	NSF/MetalsFromSNIa	Mass in metals from SNIa
Subhalo	NSF/SmootheElementAbuncdances/Carbon	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Helium	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Hydrogen	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Iron	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Magnesium	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Neon	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Nitrogen	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Oxygen	²⁾
Subhalo	NSF/SmootheElementAbuncdances/Silicon	²⁾
Subhalo	NSF/SmoothedMetallicity	Smoothed metallicity weighted by mass of non star forming gas in sub
Subhalo	NSF/Spin	Angular momentum per unit mass of non-star-forming gas particles
Subhalo	NSF/ThermalEnergy	Thermal energy of NSF gas
Subhalo	NSF/TotalEnergy	Total energy of NSF gas
Subhalo	SF/ElementAbundances/Carbon	²⁾
Subhalo	SF/ElementAbundances/Helium	²⁾
Subhalo	SF/ElementAbundances/Hydrogen	²⁾
Subhalo	SF/ElementAbundances/Iron	²⁾
Subhalo	SF/ElementAbundances/Magnesium	²⁾
Subhalo	SF/ElementAbundances/Neon	²⁾
Subhalo	SF/ElementAbundances/Nitrogen	²⁾
Subhalo	SF/ElementAbundances/Oxygen	²⁾
Subhalo	SF/ElementAbundances/Silicon	²⁾
Subhalo	SF/IronFromSNIa	Iron from SNIa
Subhalo	SF/IronFromSNIaSmoothed	Smoothed iron from SNIa
Subhalo	SF/KineticEnergy	Kinetic energy of SF gas
Subhalo	SF/Mass	Mass
Subhalo	SF/MassFromAGB	Mass from AGB
Subhalo	SF/MassFromSNII	Mass from SNII
Subhalo	SF/MassFromSNIa	Mass from SNIa
L	1	1

Group	Array Name	Description
Subhalo	SF/MassWeightedEntropy	Mass weighted mean entropy of SF gas
Subhalo	SF/MassWeightedPotential	Mass weighted mean entropy of SF gas Mass weighted potential
Subhalo	SF/MassWeightedTemperature	Mass weighted mean temperature of SF gas
Subhalo	SF/Metallicity	Mass weighted mean temperature of SF gas i Metallicity weighted by mass of star forming gas in subhalos i
Subhalo	SF/MetalsFromAGB	Mass in metals from AGB
Subhalo	SF/MetalsFromSNII	Mass in metals from SNII
Subhalo	SF/MetalsFromSNIa	Mass in metals from SNIa
Subhalo	SF/SFWeightedMetallicity	Mass in metals from Sivia Metallicity weighted by star formation rate of star forming gas in subh
Subhalo	SF/SmoothedElementAbundances/Carbon	<pre>²⁾</pre> /sup>/
Subhalo	SF/SmoothedElementAbundances/Carbon	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Hydrogen	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Hydrogen	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Magnesium	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Magnesium SF/SmoothedElementAbundances/Neon	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Nitrogen	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Oxygen	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedElementAbundances/Oxygen SF/SmoothedElementAbundances/Silicon	²⁾ 1 ²⁾ 1
Subhalo	SF/SmoothedMetallicity	Smoothed metallicity weighted by mass of star forming gas in subhalo
Subhalo	SF/SmoothedSFWeightedMetallicity	Smoothed metallicity weighted by star formation rate of star forming g
Subhalo	SF/Spin	Angular momentum per unit mass of star-forming gas particles
Subhalo	SF/ThermalEnergy	Thermal energy of SF gas
Subhalo	SF/TotalEnergy	Total energy of SF gas
Subhalo	StarFormationRate	Total gas star formation rate in solar masses / yr
Subhalo	Stars/ElementAbundances/Carbon	<pre>²⁾1</pre>
Subhalo	Stars/ElementAbundances/Helium	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Hydrogen	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Irydrogen	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Magnesium	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Neon	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Ntrogen	²⁾ 1 ²⁾ 1
Subhalo	Stars/ElementAbundances/Oxygen	^{2)^{1 ²⁾1}}
Subhalo	Stars/ElementAbundances/Silicon	^{2)^{1 ²⁾1}}
Subhalo	Stars/IronFromSNIa	Iron from SNIa
Subhalo	Stars/IronFromSNIaSmoothed	Smoothed iron from SNIa
Subhalo	Stars/KineticEnergy	Kinetic energy of stars
Subhalo	Stars/Mass	Mass in stars
Subhalo	Stars/MassFromAGB	Mass from AGB
Subhalo	Stars/MassFromSNII	Mass from SNII
Subhalo	Stars/MassFromSNIa	Mass from SNIa
Subhalo	Stars/MassWeightedPotential	Mass weighted potential
Subhalo	Stars/Metallicity	Metallicity weighted by mass of stars in subhalos
Subhalo	Stars/MetalsFromAGB	Mass in metals from AGB
Subhalo	Stars/MetalsFromSNII	Mass in metals from SNII
Subhalo	Stars/MetalsFromSNIa	Mass in metals from SNIa
Subhalo	Stars/SmoothedElementAbundances/Carbon	<pre>²⁾ </pre>
Subhalo	Stars/SmoothedElementAbundances/Helium	<pre>^{2)^{1 ²⁾}}</pre>
Subhalo	Stars/SmoothedElementAbundances/Hydrogen	<pre>^{2) ¹}</pre>
Subhalo	Stars/SmoothedElementAbundances/Iron	<pre>^{2) ¹}</pre>
Subhalo	Stars/SmoothedElementAbundances/Magnesium	<pre>^{2)^{1 ²⁾}}</pre>
Suchard	2	

Group	Array Name	Description
Subhalo	Stars/SmoothedElementAbundances/Neon	²⁾
Subhalo	Stars/SmoothedElementAbundances/Nitrogen	²⁾
Subhalo	Stars/SmoothedElementAbundances/Oxygen	²⁾
Subhalo	Stars/SmoothedElementAbundances/Silicon	²⁾
Subhalo	Stars/SmoothedMetallicity	Smoothed metallicity weighted by mass of stars in subhalos
Subhalo	Stars/Spin	Angular momentum per unit mass of star particles
Subhalo	Stars/TotalEnergy	Total energy of stars
Subhalo	StellarInitialMass	Stellar initial mass
Subhalo	StellarVelDisp	Stellar velocity dispersion ¹⁾
Subhalo	StellarVelDisp_HalfMassProjRad	Stellar velocity dispersion within half mass radius ¹⁾
Subhalo	SubGroupNumber	SubGroup Number of subhalo, begins at 0 for most massive subhalo w
Subhalo	SubLength	Number of particles in this subhalo
Subhalo	SubLengthType	Number of particles of each type in this subhalo
Subhalo	SubOffset	Offset of IDs in this subhalo. Starts at 0
Subhalo	ThermalEnergy	Total thermal energy of particles bound to this halo
Subhalo	TotalEnergy	Total energy of particles bound to this halo
Subhalo	Velocity	Vel
Subhalo	Vmax	Co-moving maximum circular velocity. Physical velocity = ???
Subhalo	VmaxRadius	VmaxRad

Contributors

Author:

• Christopher Lovell

Direct contributions to the code base:

- Aswin Vijayan
- Dimitrios Irodotou

CHAPTER $\mathbf{8}$

License & Attribution

Copyright 2019 Christopher Lovell and contributors.

eagle_IO is free software made available under the MIT License. For details see the LICENSE.

Chapter 9

Changelog

9.1 0.0.2 (04-09-2019)

• CGS unit conversions added.

9.2 0.0.1 (01-08-2019)

• Initial release.